Федеральное государственное автономное образовательное учреждение высшего образования

Национальный исследовательский университет «Высшая школа экономики»

Общеуниверситетская кафедра высшей математики

Программа дисциплины «Статистика»

Направление 42.03.01 «Реклама и связи с общественностью» подготовки бакалавра

Разработчик программы Симонова Г.И., к.фм.н., доцент, gisimon@yandex.ru
Одобрена на заседании общеуниверситетской кафедры высшей математики
«28» _августа 2017 г.
Вав. кафедрой
к.фм.н., проф. Макаров А.А.
Утверждена Академическим советом образовательной программы
«»2017 г., № протокола
<u> </u>
Академический руководитель образовательной программы

Москва, 2017

Настоящая программа не может быть использована другими подразделениями университета и другими вузами без разрешения подразделения-разработчика программы.

1. Область применения и нормативные ссылки

Настоящая программа учебной дисциплины устанавливает минимальные требования к знаниям и умениям студента и определяет содержание и виды учебных занятий и отчётности. Изучение курса «Статистика» (1 курс специальности «Реклама и связи с общественностью» факультета коммуникаций, медиа и дизайна) предполагает предварительную подготовку студентов в объёме базового математического образования, включая такие разделы высшей математики, как основы линейной алгебры и факультета математического Необходимый объем знаний анализа. студенты коммуникаций, медиа и дизайна приобретают в процессе обучения на первом курсе, что предусмотрено учебными планами факультета. Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления 42.03.01 «Реклама и связи с общественностью».

2. Цели освоения дисциплины

Целями освоения дисциплины «Статистика» являются

- -формирование у слушателей высокой математической культуры в области теории вероятностей и основ математической статистики;
- -овладение основными знаниями в области вероятностно-статистического анализа, необходимыми в практической деятельности;
- -развитие логического мышления и умения оперировать абстрактными объектами, привитие навыков корректного употребления вероятностно-статистических понятий и символов для выражения различных количественных и качественных отношений;
- -ясное понимание вероятностно-статистической составляющей в общей подготовке специалиста в области рекламы и связи с общественностью.

Для реализации поставленных целей в ходе изучения курса «Статистика» решается задача обеспечения специального вероятностно-статистического образования студентов соответствующей специальности. Фундаментальность подготовки включает в себя достаточную общность математических понятий и конструкций, обеспечивающую широкий спектр их применимости, разумную точность формулировок математических свойств исследуемых объектов, логическую строгость изложения предмета, опирающуюся на адекватный современный математический язык.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

В результате изучения курса «Статистика» студенты должны:

- -знать и уметь использовать вероятностно-статистический инструментарий для решения прикладных задач в области рекламы;
- -владеть навыками математической формализации задач, формирования необходимых статистических данных, уметь применять необходимый математический инструментарий при выборе и обосновании решений возникающих задач, анализе эффективности, а также возможных последствий принимаемых решений;
- -иметь представление о вероятностно-статистическом моделировании прикладных проблем и содержательно интерпретировать получаемые количественные результаты их решений;

-владеть навыками самостоятельной работы и постоянно пополнять свой уровень знаний в свете современных тенденций развития математического инструментария для решения соответствующих задач.

В результате освоения дисциплины студент осваивает следующие компетенции:

Компетенция	Код по	Основные признаки	Формы и методы	
,	ΦΓΟC/	освоения	обучения,	
	НИУ	(показатели	способствующие	
		достижения	формированию и	
		результата)	развитию	
			компетенции	
Способен учиться,	СК- Б1	Показателем	Лекции,	
приобретать новые знания,		освоения являются	семинарские	
умения		оценки текущего,	занятия, домашние	
		промежуточного и	задания	
		итогового контроля		
Способен решать проблемы в	СК-Б4	Показателем	Лекции,	
профессиональной		освоения являются	семинарские	
деятельности на основе		оценки текущего,	занятия, домашние	
анализа и синтеза		промежуточного и	задания	
		итогового контроля		
Способен работать с	СК-Б6	Показателем	Лекции,	
информацией: находить,		освоения являются	семинарские	
оценивать и использовать		оценки текущего,	занятия, домашние	
информацию из различных		промежуточного и	задания	
источников, необходимую для		итогового контроля		
решения научных и				
профессиональных задач				

4. Место дисциплины в структуре образовательной программы

Настоящая дисциплина относится к циклу «Дисциплины профессионального цикла (Major), базовая часть» подготовки бакалавров. Основные положения дисциплины должны быть использованы в дальнейшем в информационно-аналитической работе.

5. Тематический план учебной дисциплины

		Аудиторные часы Самостоя-			
№	Название раздела	Всего часов	Лекции	Семинары	тельная работа
1	Основы теории вероятностей				
1.1	Случайный эксперимент. Пространства элементарных событий. Случайные события. Действия над событиями. Вероятности событий.	6	1	1	4
1.2	Выбор из конечной совокупности. Элементы комбинаторики.	8	1	1	6
1.3	Независимые события. Испытания Бернулли. Условные вероятности.	8	1	2	5
1.4	Случайные величины и их распределения. Числовые характеристики случайных величин.	9	1	2	6
1.5	Некоторые важные распределения вероятностей.	7	1	1	5
1.6	Совместные распределения. Числовые характеристики совместных распределений. Коэффициент корреляции.	7	1	2	4
1.7	Предельные законы теории вероятностей.	4	1	1	2
2	Основы математической статистики				
2.1	Шкалы измерений. Выборка, характеристики выборки. Графические методы представления данных.	9	1	2	6
2.2	Проверка статистических гипотез (общие положения и прикладные задачи)	12	2	2	8
2.3	Некоторые важные статистические критерии в одновыборочных и двухвыборочных задачах.	15	2	3	10
2.4	Статистическое оценивание.	14	2	4	8
2.5	Статистическая зависимость. Связь признаков в различных шкалах измерений.	15	2	3	10
	Итого	114	16	24	74

6. Формы контроля знаний студентов

Текущий контроль: текущая контрольная работа (продолжительностью 80 мин.) в письменном виде. Итоговый контроль: экзаменационная контрольная работа продолжительностью 120 мин. проводится в письменном виде.

Тип контроля	Форма контроля	Модуль
		3
Текущий	Контрольная работа	Письменная работа 80 мин.
Итоговый	Экзаменационная контрольная работа	Письменная работа 120 мин.

6.1 Критерии оценки знаний, навыков

Оценки ставятся по 10-бальной шкале. Округление итоговой оценки производится до ближайшего целого числа (если дробная часть оценки равна 0.5, то округление производится в большую сторону).

Итоговая оценка Z выставляется согласно следующему правилу:

 $0 \le Z < 4$ неудовлетворительно

4≤Z<6 удовлетворительно

 $6 \le Z < 8$ хорошо

 $8 \le Z \le 10$ отлично.

7. Содержание программы

Раздел 1. Основы теории вероятностей

Тема 1.1. Случайный эксперимент. Пространства элементарных событий. Случайные события. Действия над событиями. Вероятности событий.

Пространства элементарных исходов. События и действия с ними. Вероятности в непрерывных и дискретных пространствах. Свойства вероятности.

Тема 1.2. Выбор из конечной совокупности. Элементы комбинаторики.

Выбор из конечной совокупности. Общие правила комбинаторики. Перестановки, размещения, сочетания.

Тема 1.3. Независимые события. Испытания Бернулли. Условные вероятности. Независимые события. Испытания Бернулли. Условная вероятность. Формула полной вероятности. Формула Байеса.

Тема 1.4. Случайные величины и их распределения. Числовые характеристики случайных величин.

Случайная величина. Функция распределения случайной величины. Математическое ожидание, медиана, квартили, квантили, дисперсия, стандартное отклонение, моменты.

Тема 1.5. Некоторые важные распределения вероятностей. Биномиальное, Пуассона, показательное, нормальное распределения. Их применение.

Тема 1.6. Совместные распределения. Числовые характеристики совместных распределений. Коэффициент корреляции.

Совместные распределения; дискретные и непрерывные. Двумерное нормальное распределение. Ковариация. Коэффициент корреляции.

Тема 1.7. Предельные законы теории вероятностей.

Теорема Бернулли. Вероятностный предел. Связь частоты и вероятности события. Закон больших чисел. Теорема Муавра-Лапласа. Центральная предельная теорема.

Раздел 2. Основы математической статистики

Тема 2.1. Шкалы измерений. Выборка, характеристики выборки. Графические методы представления данных.

Шкалы измерений: номинальная, порядковая, интервальная, отношений. Вариационный ряд. Выборочная функция распределения. Выборочные характеристики. Меры положения: выборочное среднее, усечённое среднее, выборочные медиана, квартили. Меры разброса: размах, выборочная дисперсия, межквартильный размах. Меры формы распределения: коэффициенты асимметрии и эксцесса. Гистограмма. Ящик с усами. Нормальная вероятностная бумага.

Тема 2.2. Проверка статистических гипотез (общие положения и прикладные задачи).

Проверка статистических гипотез. Статистические модели. Примеры статистических моделей и гипотез. Нулевая гипотеза. Альтернативная гипотеза. Простые и сложные статистические гипотезы. Статистический критерий, критическое множество. Ошибки первого и второго рода, уровень значимости, мощность статистического критерия. Критерий «хи-квадрат» Пирсона для простой гипотезы при изучении динамики структуры потребления и структуры рынка.

Тема 2.3. Некоторые важные статистические критерии в одновыборочных и двухвыборочных задачах.

Анализ парных выборок. Критерий знаков. Одновыборочный критерий Стьюдента. Анализ двух независимых выборок. Критерий Вилкоксона. Двухвыборочный критерий Стьюдента. Таблицы для распределения Стьюдента.

Тема 2.4. Статистическое оценивание.

Оценивание параметров нормального распределения. Доверительный интервал для математического ожидания, построенный по выборке из нормального распределения. Метод максимального правдоподобия.

Тема 2.5. Статистическая зависимость. Связь признаков в различных шкалах измерений.

Исследование зависимостей. Выборочные коэффициенты корреляции Пирсона и Спирмена. Проверка гипотез о их значимости. Таблицы сопряжённости.

8. Образовательные технологии

На семинарских занятиях обсуждается решение задач по основным темам курса. Подобные задачи будут предложены в итоговой экзаменационной работе.

Методические указания студентам

Интенсивный лекционный курс охватывает много базовых понятий и тем. Для успешного освоения курса потребуется большая самостоятельная работа (по плану 74 часов при 16 час. лекций и 24 час. семинарских занятий).

9. Оценочные средства для текущего контроля и аттестации студента

9.1. Тематика заданий текущего контроля

- 1. Вычисление вероятностей для простейших вероятностных моделей.
- 2. Формула полной вероятности. Формула Байеса.
- 3. Схема испытаний Бернулли.
- 4. Вычисление вероятностей и квантилей для нормального распределения с использованием таблиц стандартного нормального распределения.
- 5. Вычисление математического ожидания и дисперсии.
- 6. Критерий знаков.
- 7. Одновыборочный критерий Стьюдента.
- 8. Двухвыборочный критерий Стьюдента.
- 9. Ранговый критерий Вилкоксона.
- 10. Вычисление выборочных коэффициентов корреляции Пирсона и Спирмена.
- 11. Таблицы сопряженности.

9.2. Вопросы для оценки качества освоения дисциплины

- 1. Пространство элементарных исходов.
- 2. События и действия с ними.
- 3. Вероятности событий, их свойства.
- 4. Формула полной вероятности.
- 5. Формула Байеса.
- 6. Зависимые и независимые события.
- 7. Схема испытаний Бернулли.
- 8. Дискретные случайные величины, их распределения.
- 9. Непрерывные случайные величины.
- 10. Функция распределения дискретной и непрерывной случайных величин.
- 11. Математическое ожидание случайной величины и его свойства.
- 12. Дисперсия случайной величины и её свойства.
- 13. Нормальное распределение. Использованием таблиц стандартного нормального распределения.
- 14. Выборка. Характеристики выборки.
- 15. Проверка статистических гипотез. Критическое множество. P-value.
- 16. Критерий знаков.
- 17. Ранговый критерий Вилкоксона однородности двух независимых выборок.
- 18. Проверка статистических гипотез для нормальных выборок. Критерии Стьюдента.
- 19. Доверительное оценивание.
- 20. Выборочный коэффициент корреляции Пирсона.
- 21. Ранговый коэффициент корреляции Спирмена.
- 22. Таблицы сопряжённости.

10. Порядок формирования оценок по дисциплине

Итоговая оценка Z вычисляется по следующей формуле: Z=0,5*H+0,5*I, где H — накопленная оценка, выставленная с учётом активности на семинарах и результата текущей контрольной работы, I — оценка за итоговую экзаменационную контрольную работу по курсу. Накопленная оценка H вычисляется так: H=0,6*A+0,4*K, где A — оценка за активность, K — оценка за текущую контрольную работу. При оценивании активности учитываются выступления у доски и выполнение самостоятельных работ. Оценки A, K могут быть не целыми числами, оценка H округляется до ближайшего целого числа по следующим правилам: если дробная часть числа меньше 0,5, то округление вниз, иначе — вверх. Округление итоговой оценки Z также производится до ближайшего целого числа по следующим правилам: если дробная часть числа меньше 0,5, то округление вниз, иначе — вверх.

Итоговая оценка определяется согласно следующему правилу:

 $0 \le Z < 4$ неудовлетворительно

4≤Z<6 удовлетворительно

6≤Z<8 хорошо

8≤Z≤10 _{отлично.}

Переписывание текущей контрольной работы и самостоятельных работ промежуточного контроля или написание текущей контрольной работы и самостоятельных работ промежуточного контроля в дополнительное время не допускается.

11. Учебно-методическое и информационное обеспечение дисциплины

11.1. Базовые учебники

- 1. Ю.Н. Тюрин, А.А. Макаров, Г.И. Симонова. Теория вероятностей: учебник для экономических и гуманитарных специальностей. М.: МЦНМО, 2009.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1999.

11.2. Основная литература

- 1. Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере: учебное пособие. М.: ИД «ФОРУМ», 2008. 368 с.
- 2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 1999.

11.3 Дополнительная литература

- 1. Гнеденко Б.В. Курс теории вероятностей М.: Наука, 2007.
- 2. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983.
- 3. Холлендер М., Вулф Д.А.. Непараметрические методы статистики. М., Финансы и статистика, 1983.
- 4. Кобзарь А.И. Прикладная математическая статистика. М.: Физматлит, 2006.
- 5. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ-ДАНА, 2007.